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MASS EXTINCTIONS: AN ALTERNATIVE TO THE ALLEE

EFFECT

By Rinaldo B. Schinazi

University of Colorado

We introduce a spatial stochastic process on the lattice Z
d to

model mass extinctions. Each site of the lattice may host a flock of up
to N individuals. Each individual may give birth to a new individual
at the same site at rate φ until the maximum of N individuals has
been reached at the site. Once the flock reaches N individuals, then,
and only then, it starts giving birth on each of the 2d neighboring
sites at rate λ(N). Finally, disaster strikes at rate 1, that is, the whole
flock disappears. Our model shows that, at least in theory, there is
a critical maximum flock size above which a species is certain to
disappear and below which it may survive.

1. Introduction and results. It seems that the main mass extinction the-
ory proposed in ecology, for species that reproduce sexually, is the so-called
Allee effect: if the density of a certain species is driven sufficiently low, then
encountering mates of the opposite sex becomes unlikely and the popula-
tion is driven to extinction even if left alone by predators or disease; see
Stephens and Sutherland (1999). While the Allee effect seems suitable to
explain extinction of animals living by themselves or in small flocks, it does
not look suitable to explain the extinction or near extinction of animals
such as passenger pigeons which apparently remained in large flocks almost
to their end; see Austin (1983).

We propose a mathematical model that, at least in theory, shows that
animals living in large flocks are more susceptible to mass extinctions than
animals living in small flocks. More precisely, we will show that if the max-
imum flock size is above a certain threshold, then the population is certain
to become extinct, while if the maximum flock size is below the threshold,
there is a strictly positive probability that the population will survive.
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Our model is a spatial stochastic model on the lattice Z
d, typically d =

2. Each site of the lattice may host a flock of up to N individuals. Each
individual may give birth to a new individual at the same site at rate φ
until the maximum of N individuals has been reached at the site. Once
the flock reaches N individuals, then, and only then, it starts giving birth
on each of the 2d neighboring sites at rate λ(N). This rule is supposed to
mimic the fact that individuals like to stay in a flock and will give birth
outside the flock only when the flock attains the maximum number N that
a site may support. Finally, disaster strikes at rate 1, that is, the whole flock
disappears. This rule mimics an encounter with greedy hunters or a new
disease. Both disasters seem to have stricken the American buffalo and the
passenger pigeon.

We now write the above description mathematically. Each site x of Z
d

may be in one of the states: 0,1,2, . . . ,N and this state is the size of the
flock at x. The model is a continuous-time Markov process that we denote
by ηt. Let nN (x, ηt) be the number of neighbors of site x, among its 2d
nearest neighbors, that are in state N at time t.

Assume that the model is in configuration η; then the state at a given
site x evolves as follows:

i → i + 1 at rate iφ + λ(N)nN (x, η) for 0 ≤ i ≤N − 1,

i → 0 at rate 1 for 1 ≤ i≤N.

Schinazi (2002) has introduced a model related to the present one for a
different question.

We will be interested in extinctions in two different senses. We say that
finite populations die out if, starting from any finite population, there is
a finite random time after which all sites are empty. We say that infinite
populations die out if, starting from any infinite population, for any given
site there is a finite random time after which the site will be empty forever.

The model in the special case N = 1 is well known and is called the
contact process [see Liggett (1999)]. For the contact process, we know that
there exists a critical value λc (that depends on the dimension d of the
lattice) such that the population dies out (in the two senses defined above)
if and only if λ ≤ λc.

We now state our main result.

Theorem 1. Consider the model with parameters N , λ(N) and φ and
let

m ≡ 2dλ(N)
N−1
∏

i=1

(

1−
1

1 + iφ + 2dλ(N)

)

for N ≥ 2,

m ≡ 2dλ(1) for N = 1.
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(a) Assume m ≤ 1; then any finite population dies out.
(b) Assume m < 1; then any infinite population dies out.

Next we show that if λ(N) does not grow too rapidly with N , then the
population dies out for large N .

Corollary 1. Assume that λ(N) and φ > 0 are such that

lim
N→∞

λ(N)

N1/(1+φ)
= 0;

then any finite or infinite population dies out when N is large enough.

A little calculus is enough to prove Corollary 1 so we skip the proof. Note
also that the conclusion of Corollary 1 also holds when φ = 0 provided there
exists a < 1 such that

lim
N→∞

λ(N)

Na
= 0.

Our main application is the following easy consequence of Corollary 1.

Corollary 2. Assume λ(N)≡ λ and that λ > λc (the critical value of
the contact process), φ > 0. Then, there is a critical positive integer Nc(λ,φ)
such that any finite population dies out for N > Nc and survives for N < Nc.
The same is true for infinite populations for a possibly different critical Nc.

Proof. According to Corollary 1, finite and infinite populations die
out for N large enough for constant λ. On the other hand, if λ > λc we
know that the model with N = 1 has a positive probability of not becoming
extinct. Finally, as a consequence of the construction provided in Section
2 we will see that for constant λ, the smaller the N the more likely it is
for the population to survive. Putting together these three facts, we get the
existence of the critical value Nc. This completes the proof of Corollary 2.
�

We believe that the critical value Nc is the same for finite and infinite
populations but this is still unproved.

Next we show that a low internal birth rate φ may be compensated by a
large external birth rate λ(N) but that the converse is not true.

Theorem 2. (a) For all φ≥ 0, N ≥ 1 and all initial configurations start-
ing with at least one site in state N , there is a positive probability, for finite
or infinite populations, not to die out, provided λ(N) is large enough.

(b) If λ(N) < λc, then finite and infinite populations die out for all φ ∈
[0;∞].
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2. Construction of the process and proof of Theorem 1. We now give
an explicit graphical construction for the process ηt. Let ‖ · ‖ denote the
Euclidean norm. Consider a collection of independent Poisson processes:
{Lx,y, F x,i,Dx :x, y ∈Z

d,‖x− y‖= 1,1≤ i≤ N − 1}. For x and y in Z
d such

that ‖x − y‖ = 1, let the intensity of Lx,y be λ(N). For x in Z
d and an

integer i between 1 and N − 1, let the intensity of F x,i be iφ. Finally, for x
in Z

d, let 1 be the intensity of Dx. The graphical construction takes place in
the space-time region Z

d × (0,∞). At an arrival time of Lx,y (‖x− y‖ = 1),
if site x is in state N and there are N − 1 or fewer individuals at site y,
then we add an individual at y. At an arrival time of F x,i and if x is in
state i, 1 ≤ i ≤N − 1, then we change the state of x to i + 1. Finally, at an
arrival time of Dx we put x in state 0. In this way we obtain a version of our
spatial stochastic process with the precribed rates. For more on graphical
constructions, see, for instance, Durrett (1995).

Assume N1 < N2 and λ(N) ≡ λ. Using the graphical construction above,
construct the model, η2,t, for parameters (λ,N2, φ). We can also construct
the model η1,t with parameters (λ,N1, φ) in the same probability space by
using the same Poisson processes Lx,y, Dx and by using the processes F x,i

only for i≤ N1 − 1. Start η1,t and η2,t with a single individual at the origin.
Both processes are in the same configuration until they reach state N1 at
the origin. At this point in time, the flock at the origin for η1,t starts giving
birth to individuals in neighboring sites while the flock at the origin for η2,t

continues increasing internally. Since the death rates and the external birth
rate λ are the same for both processes, it is easy to check the following. No
transition can break the inequalities

min(η2,t(x),N1)≤ η1,t(x).

In this sense, the lower the N the more spread out the population and the
more likely it is to survive. Note that this coupling works only for constant
λ. The fact that the model is more likely to survive for small N is all that
was missing to the proof of Corollary 2.

One can see that some attempted births will not occur because the site
on which the attempted birth takes place has already reached the maximum
size N . This creates dependence between the size of the offspring of differ-
ent individuals. Because of this lack of independence, explicit probability
computations seem impossible. In order to prove Theorem 1, we introduce a
branching-like process for which explicit computations are possible and that
dominates, in a certain sense, our process ηt.

We now describe the new process informally. It may be constructed in
the same way as ηt by using appropriate Poisson processes. For a formal
construction of a similar process, see Pemantle and Stacey (2001). While for
ηt there is a maximum of one flock per site (with a maximum size of N ), for
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the new branching-like process, that we denote by bt, there is no limit on
the number of flocks per site but each flock is again limited to N individuals
maximum. For bt, as for ηt and with the same rate λ(N)nN , each new flock
is started by a birth from one of its neighbors. However, for bt, once a flock
is started it grows only through internal births. That is, a flock that has
started does not receive births from neighbors. We take the internal birth
rate for a flock in bt to go from i to i + 1 to be iφ + 2dλ(N). Note that this
rate is the maximum growth rate for a flock in ηt (that rate is achieved only
if all its 2d neighbors are in state N ). Each flock of bt that reaches size N
starts giving birth to individuals in neighboring sites at rate λ(N). Each of
these births starts a new flock, since there is no bound on the number of
flocks per site for bt. Finally, each flock dies, independently of everything
else, at rate 1.

We now give a more mathematical description of the process bt. Each
site x of Z

d is in state 0 (empty) or in state (r, i1, . . . , ir), where r ≥ 1
represents the number of flocks at site x and i1, . . . , ir represent the number
of individuals (between 1 and N ) of each flock. Let nN (x, bt) be the number
of flocks of size N in the neighborhood of site x. The transition rates for bt

at a site x are given by

(r, i1, . . . , ir) → (r + 1, i1, . . . , ir,1) at rate λ(N)nN (x, bt),

(r, i1, . . . , ir) → (r, i1, . . . , ij−1, ij + 1, ij+1, . . . , ir) at rate ijφ + 2dλ(N)

for 1≤ j ≤ r and if ij ≤N − 1,

(r, i1, . . . , ir) → (r − 1, i1, . . . , ij−1, ij+1, . . . , ir) at rate 1

for 1 ≤ j ≤ r and r ≥ 2,

0 → (1,1) at rate λ(N)nN (x, bt),

(1, i1) → 0 at rate 1.

Note that birth rates are higher for bt than for ηt, that death rates are
the same and that all attempted births actually occur for bt while they may
or may not occur for ηt. Techniques such as in Liggett [(1985), Theorem
1.5 in Chapter III] can be used to construct the processes bt and ηt in the
same probability space in such a way that, if they start with the same initial
configuration, if there is a flock of size i on a site x for ηt, then there is at
least one flock of size at least i for bt on the same site x.

We start by proving Theorem 1(a).
Consider the process bt starting with a single individual at the origin

of Z
d. We call such an individual, who is the first individual of a flock,

a founder. We are going to compute the expected number of founders a
given founder gives birth to. Let A be the event: “the founder’s flock will
eventually reach the maximum size N .” In order to reach N , the flock must
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add one individual at a time, N − 1 times before getting wiped out. Using
properties of the exponential distribution one gets

P (A) =
N−1
∏

i=1

iφ + 2dλ(N)

1 + iφ + 2dλ(N)
.

Let X be the number of founders given birth to by a single founder. In order
to give birth to k founders, the founder must first start a flock that will reach
N and then the flock must give birth k times before disappearing. Again by
using properties of the exponential distribution we get for k ≥ 1

P (X = k) =

(

2dλ(N)

2dλ(N) + 1

)k 1

2dλ(N) + 1
P (A).

Therefore, the expected number of founders is

E(X) = 2dλ(N)P (A).

Note that E(X) = m, where m has been defined in the statement of Theorem
1.

Let the first founder be the zeroth generation and let Z0 = 1. This first
founder gives birth to a random number of founders, before dying, and these
form the first generation. Denote their number by Z1. More generally, let
n ≥ 1; if Zn−1 = 0, then Zn = 0; if Zn−1 ≥ 1, then Zn is the total number of
founders the Zn−1 founders, of the (n− 1)st generation, give birth to before
dying. It is clear that the process Zn is a Galton–Watson process and it dies
out if and only if

m ≤ 1.

Note that if Zn becomes extinct, so does bt and therefore ηt. It is easy to
see that the same is true if we start with any finite number of individuals
instead of 1. This completes the proof of Theorem 1(a).

We now prove Theorem 1(b).
Let η̄t be the process ηt starting with N individuals per site. Using the

graphical construction one can construct η̄t and ηt so that η̄t(x)≥ ηt(x) for
every site x, all times t > 0 and any initial configuration η0. Therefore, it is
enough to show that η̄t dies out. That is, for any site x in Z

d there is a time
T such that η̄t(x) = 0 for all t > T . We will actually prove this claim for the
process bt, starting with one flock of size N at each site.

Note that if there is at least one individual at site x at time t for the
process bt, then it must be the case that this individual is the descendent of
an individual who was on some site y at time 0. Let Zn(y) be the number of
founders [as defined in the proof of Theorem 1(a)] of the nth generation of
the process started at y with one flock of N individuals. For an individual
at y to be the ancestor of an individual at x, the process Zn(y) must have
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survived at least ‖x − y‖ generations. This is so because each generation
gives birth on nearest-neighbor sites only. So nth-generation founders are at
distance n or less from y. Since there is one flock of N individuals at time
0 at y, the expected number of founders in generation 1 is 2dλ(N). From
generation 1 onwards Zn(y) is a Galton–Watson process with mean offspring
m. Thus, let n = [‖x − y‖] + 1, where [a] is the integer part of a, and using
that m < 1 we get

P (Zn(y) ≥ 1)≤ E(Zn(y)) = 2dλ(N)mn−1 ≤ 2dλ(N)m‖x−y‖−1.

Therefore,

∑

y∈Zd

P (Zn(y)≥ 1) ≤
∑

y∈Zd

2dλ(N)

m
m‖x−y‖ < ∞.

The Borel–Cantelli lemma implies that almost surely there is an integer ℓ
such that if ‖y − x‖ > ℓ, then y cannot be an ancestor of x. On the other
hand, according to Theorem 1(a), any finite population dies out. Thus, the
population which was initially on sites y such that ‖y − x‖ ≤ ℓ is dead after
a finite random time T . This shows that site x remains empty after T .

This completes the proof of Theorem 1(b).

3. Proof of Theorem 2. Theorem 2(a) can be proved in a pretty standard
way so we will only sketch its proof. We deal with the case d = 1: it is easy
to see that if the process survives in d = 1, then it will survive in any other
dimension. Let

B = (−4L,4L)× [0, T ].

Assume that each site of [−L,L] is in state N . Consider the process restricted
to the space-time region B; that is, assume that there are no births from
outside B into B.

Let ε > 0; it is easy to see that we can pick T (depending on ε and L) so
that the probability that there are no deaths in the space-time box B is at
least 1− ε/2.

Note that even if φ = 0, the flock at L can fill up the site L + 1. This can
happen provided the state at L is N . Once the site L+1 is in state N it can
start filling the site in L+ 2 and so on. More formally, we define the process
rt (as rightmost site) as r0 = (L,N), for which the first coordinate indicates
the site position and the second coordinate indicates the state of that site.
The evolution rules for rt are given by

(i,N) → (i + 1,1) at rate λ(N) for L ≤ i ≤ 4L− 1,

(i, j) → (i, j + 1) at rate λ(N) for L + 1 ≤ i≤ 4L− 1 and 1≤ j ≤N − 1.
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In the absence of deaths in B, all the sites between −L and 3L will be
in state N by time T provided rt reaches (3L,N) by time T . Ignoring the
internal births, that is, assuming that φ = 0, only delays the filling process.
It is easy to see that counting all the successive transitions for rt gives a
Poisson process Rt with rate λ(N). We have that rT = (3L,N) if and only
if RT is at least (2L + 1)N . This has probability at least 1 − ε/4 provided
λ(N) (that depends on N , L, T and ε > 0) is large enough. The same may
be done to show that, in the absence of deaths, with probability at least
1− ε/4 all the sites between −3L and L will be filled by time T . Therefore,
one sees that with probability at least 1 − ε one block of sites, in [−L,L],
in state N gives birth to two blocks of sites, in [−3L,−L] and in [L,3L], in
the same state. Moreover, this is true for the process restricted to B and
uniformly on all possible states of the boundary of B.

Now, well-known techniques [see, e.g., Theorem 4.4 in Durrett (1995)]
allow us to compare the process ηt to a (very) supercritical oriented perco-
lation on

L = {(m,n) ∈Z
2 :m + n is even}.

This comparison implies survival for finite and infinite populations.
Note that if at least one site is in state N , then there is a positive proba-

bility, even if φ = 0, to get a block of 2L+1 sites in state N and we may start
the construction above. This completes the sketch of the proof of Theorem
2(a).

We now turn to the proof of Theorem 2(b). It is essentially the same proof
as the one of Theorem 1(b) in Schinazi (2002). Since it is short we include
it.

Consider the model with φ = ∞. In this case, as soon as there is one
individual at a site it immediately fills to N . So each site has only two
possible states: 0 and N . The transition rates are given by

0 → N at rate λ(N)nN (x, η),

N → 0 at rate 1.

Therefore, the model above is a contact process with birth rate λ(N). If
λ(N) < λc, this contact process dies out.

Using the graphical construction, it is easy to see that the model with φ =
∞ can be coupled to a model with any finite φ in such a way that, starting
from the same configuration, the model with φ = ∞ has more individuals,
site per site, than the model with finite φ. Since the model with φ = ∞ dies
out, so does the model with a finite φ. This completes the proof of Theorem
2(b).
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